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Cylindrical tubes of moderate wall thickness
such as those proposed for the original space station
truss, may fail due to the gradual collapse of the tube
cross-section as it distorts under load. Sometimes
referred to as the Brazier instability, it is a nonlinear
phenomenon. This paper presents an extension of
an approximate closed-form solution of the collapse
of isotropic tubes subject to end moments developed
by Reissner in 1959 to include specially orthotropic
matei'ial. The closed-form solution was verified by an
exmnsive nonlinear finite element analysis of the
collapse of long tubes under applied end moments
for radius-to-thickness ratios and composite layups in
the range proposed for recent space station truss
framework designs. The finite element analysis
validated the assumption of inextensional
deformation of the cylindrical cross-section and the
approximation of the material as specially orthotropic.

tat.r_ed.ut,U.o_

, Designers of large truss-type space structures,
mcluding designers of the original space station
configuration, proposed using composite tubes as
b_sic truss elements. The tubes were primarily
designed to resist Euler buckling. However, manned
stcuctures like the space station also have to support
bending moments caused by an astronaut pushing
against a tube or caused by other transverse forces
which might occur during the normal operation of
transportation platforms. In these situations, a thin-
walled tube subjected to a bending moment can fail
in a short wave-length instability mode due to
excessive local compressive stress, whereas a thick-
walled tube can fail due to stresses in excess of the
ultimate strength of the material. For tubes of
moderate wall thickness, such as those proposed for
the original space station truss, another mode of
failure can occur. The failure is characterized by the
gradual collapse of the tube because of reductions in
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its moment of inertia due to cross-sectional distortion
under load. This failure mode is generally referred to
as Brazier instability, and is a nonlinear

phenomenon.

The nonlinear problem of pure bending of
infinitely long straight tubes was first solved by
Brazier. 2 Wood 3 developed the theory further to
include the effects of pressure, and Reissner 1 refined
the solution and expanded it to include initially
curved tubes. Axelrad and Emmerting 4 provided a
numerical solution of the local instability about the
deformed state of a short finite-length, orthotropic
tube under bending. The present paper extends an
approximate closed-form solution of the collapse of
long isotropic tubes subject to end moments
developed by Reissner 1 in 1959 to include a special
class of tubes made of laminated composite material.
The theory presented herein is developed for
unpressurized straight tubes, and requires that the
composite behaves as a specially orthotropic
homogeneous material in a state of plane stress.
Therefore fiber orientations and stacking sequence of
a laminate modeled by this theory must yield physical
properties which are consistent with this assumption.
These physical requirements and their effects on the
constitutive equations for a general multi-layered
composite material are discussed in the paper. The
closed-form solution is verified by an extensive
nonlinear finite element analysis of the collapse of
long tubes under applied end moments for radius-to-
thickness ratios and composite layups in the range
proposed for recent space station truss framework
designs.

Extension of Closed-form Solution to
ComDoslte Tubes

The analysis in this section extends the
nonlinear collapse analysis presented by Reissner
for isotropic tubes to include tubes made of specially
orthotropic composite materials, The extension of the
analysis requires only minor modifications to
Reissner's theory. For completeness, an overview of
the theory and the corresponding modifications are
presented in this section. Specifically, the basic
assumptions of Reissner, s theory are presented and
the implications of the assumptions on composite
tube construction are discussed. Next, the
modifications to specific parts of Reissner's theory
are presented and the equations governing the
collapse behavior of composite tubes are derived.
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Assumotions of Reissner's Theory_

An exact analysis for predicting the nonlinear
collapse of tubes subjected to pure bending
moments is difficult to obtain in closed form.
However, Relssner introduced some simplifying
assumptions that permit formulation of an
approximate closed-form solution. The assumptions
simplify the analysis by capturing only the dominant
mechanisms participating in the actual collapse
response.

Figure 1 Longitudinal bending of an initially straight
tube

A tube is considered which has a wall
thickness h, mean cross-sectional radius r, and is
subjected to a moment M applied to the ends of the
tube, as shown in figure 1. As the tube bends, axial
stresses develop in the shell wall. In Reissner's
theory, these stresses and the corresponding strains
are assumed to be primarily due to the beam
bending action of the tube and are assumed to be
uniform along the length of the tube. Local bending
of the shell is assumed to be negligible. However,
the orientation of the longitudinal stresses induces
stresses in the plane of the tube cross-section which
cause the cross-section to deform in a doubly
symmetric manner as shown in figure 2. As the tube
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Figure 2 Cross-sectional deformation

cross section deforms, stresses and strains develop
within the cross-section. The cross-sectional
deformation state is assumed to be identical for all
cross-sections. An important assumption made by

Reissner which greatly simplifies the analysis is that
each cross-section remains inextensible during
deformation, i.e., the circumferential membrane strain
is negligible compared to the corresponding bending
strain caused by changes in the profile. The
mathematical implications of these assumptions are
presented in subsequent sections of the present
study.

R_strictions ort Com0osite Tube Construction

The equations relating the stress resultants to
the membrane strains and curvature changes of a
general multi-layered laminate under plane stress
are s

Np } I All AI2 A16
Nq = A|2 A22 A26

Npq ,416 A26 A66

BII BI2 BI6 1{

+ BI2 B22 B26

BI6 B26 B66

(I)

and

Mq = B12 B22 B26

_M/xt B16 B26 B66

D12 D22 D26

D16 D26 D66

(2)

where Np, Nq, and Npq are the in-plane distributed
forces; Mp, Mq, and Mpq are the distributed bending

and twisting moments; epo , eqo , and 7pqo are the
extensional and shear strains of the middle surface;

and ,_o, to, and icpq° are the changes in curvature of
the middle surface. The subscripts p and q refer to an
arbitrary body coordinate system. The elements of
the A, B, and D matrices are in general non-zero;
however, equations (1) and (2) may be reduced to
the equations for a homogeneous orthotro, pl_ic
material if the stacking sequence and fiber
orientation of the plies has a certain arrangement.

The class of laminates investigated in the
present study have geometry and material properties
which are symmetric with respect to the middle
surface of the shell. Therefore there is no bending-
extension coupling and the Bi/terms in equations (!)
and (2) are all zero. The A16 and .426 terms m
equation (1) are also zero for these laminates, i.e.,
there is no shear-extension coupling, because the
material layups for the tubes considered in the
present study have a lamina oriented at -a degrees to
cancel the effect of each lamina oriented at +n

degrees. An assumption is made that the D]6 and
D26 terms in equation (2) are zero, i.e., there is no
bending-twisting coupling. Although this is not
generally true, there are many practical laminates in
which the effects of these terms are negligible. The
assumptions lead to the result that the principal
material axes, 1 and 2, of the laminate are aligned
with the natural body axes, p and q, and the material
is referred to as specially orthotropic. Under these
conditions, equations (t) and (2) reduce to



N1 / [ A|I Al2 0
N2 = AI2 A22 0
Nt2 0 0 ,466

MI } [ DII D12 0
M2 = DI2 D22 0
Mr2 0 0 D66

(3)

(4)

In the following discussion, the principal material
directions, 1 and 2, are aligned with the longitudinal
and circumferential directions of the tube,
respectively. For example, the longitudinal stress in

the tube is denoted by el.

Beam Bendino Effects

The equilibrium equation for beam bending,
relating the applied moment to the longitudinal fiber

stress or1,is given by

,5,M

where ds and y+ v are defined as shown in figure 2.
From equation (3), the relation between the fiber

stress at and the fiber strain at the midsection of the

lube wall el ° is

1 0
= A o

al _(A 11£1 + 12E2) (6)

Due to Reissner's assumption that the circumferential
strain of the middle surface of the tube wall is
negligible, the equation simplifies to

Air o
crl = ---g-el (7)

The term G1 represents an average beam-like stress,
and since it is constant along the length of the beam
and is uniquely related to the applied moment, it can
be treated as an applied stress in the problem
formulation. The cross-sectional strain distribution,
with the influence of the cross-sectional deformation,
is expressed as

o 0,+v)
t_ = T (8)

Cross-sectional Deformation Effects

In Reissner's simplified nonlinear analysis, it is
assumed that the deformation of the tube cross-
section is caused primarily by loading induced into
the plane of the tube cross-section by the longitudinal

beam bending stress trl. As the tube bends, the
longitudinal stress follows the deformed geometry,
and a force is projected into the plane of the cross-
Section. The resulting force is then transformed into
an equivalent pressure pa that acts along the y axis
as shown in figure 3.

N_rl Po

P, Pt_ ds = rd_

0,,., ; X.

Figure 3 Change in curvature and tangent angle,
and forces acting on cross-sectional
segment

The pressure is given by

' ' _- (9)Pa a! R

and the components in the normal and tangential
directions are

Pn = posin(_ + _) (10)

p, = -p,,cos (_ + fl) (11)

Figure 3 shows the resulting deformation of a
differential segment of the cylinder's cross-section.
The original tangent angle of the segment changes
from ¢ to ¢+fl, and fl is taken as the deformation
variable. The deformed radius of curvature

expressed as a function of .Bis

± -- + 1,2)
P

where r is the undeformed tube radius and p is the
radius of the deformed differential segment. Primed

quantities are differentiated with respect to _. The
displacement v in the y direction is found to be

, = d, v, (13)

where _ is the angular coordinate of the middle

surface of the cross-section, and _ is a dummy
integration variable.

The forces acting on the deformed cross-
section are also shown in figure 3, and the
corresponding equilibrium equations are

N_' Q + p, = 0 (14)



Q-- M 0 (15)+ +pn=
r

M,___.'_ Q = 0 (16)

where Q is the shear force per unit length, and pt and
pn are the tangential and normal components of
pressure.

From equation (4), the circumferential moment
is given In terms of the change of curvature as

M, = M2 : D!2_I +D22_"_ (17)

Consistent with Reissner's formulation for isotropic
materials, the Dr2 term in equation (17) is ignored,
i.e., the longitudinal curvature is assumed to be much
smaller than the curvature caused by the cross-
sectional bending. For the tubes used in this study, it
can be demonstrated that this assumption is

reasonable, i.e., _ct° is on the order of one percent of

r2o at collapse. The twisting curvature A-12o should
also be zero due to the initial assumption of uniform
bending (constant curvature), in other words, the
assumption that D/6 is zero should not cause
appreciable errors unless D/6 is very large.
Therefore equation (17) reduces to

and the stress-strain relation becomes

(18)

_ 1. = _,_. (19)
D22

EQuations Governing Collaose Behavior and
Analytical Solution

The system of equations (9) to (11 ) and (14) to

(19) is further reduced. Tr_onometric terms with fl in

the argument are expanded and terms of order/33
are neglected. Symmetric boundary conditions are
applied, and with appropriate substitutions, the
modified form of the final nonlinear ordinary

differential equation for the deformation variable fl is
found to be

It" '_ jo

+ (20)

The equation for the fiber stress Gt becomes

(21)

and the moment-curvature equation becomes

_J_
R

#sin_vd_sin_d_

(22)

Reissner's method of solution for (20), (21)
and (22) is equally valid for the modified equations,
because only the constant coefficients of the
differential equations have been altered. The

equation for fl, equation 20, is solved by expanding

fl in powers of a parameter a2, where a2 is expressed
as

a2 = _ (23)
8D22R 2

Retaining only the first two terms of the expansion,
consistent with the prior assumption of dropping
lerms of order f13, the approximate solution for the
moment-curvature change equation is

(24)

where

m=Mh: ]
A I l! LSD22J

1/2

(25)

and i is the undeformed moment of inertia of the tube

cross-section. Equations (24) and (25) relate the
cross-sectional distortion to the applied moment. The
tube collapses when the moment attains a maximum

value, which is obtained by solving for the value of ez
which maximizes m in equation (24). The critical

value of a 2 is 0.509 and the corresponding critical
value of m is

mc = 0.354 (26)

Substitution of (26) into (25) and substitution of

I = _Ph as an approximation of the moment of inertiP
yields the following equation for M,,, the moment at
which a moderately thick-walled tube subject to
applied end moments collapses due to loss of cross-
sectional stiffness:



Mc, = _[AIID2z]1/2 (27)

Reissner shows that the amount of cross-

sectional flattening, 5c,, associated with Me, depends

only on the critical value of cz2 and would not be
affected by the assumption of a specially orthotropic

material. Therefore his computed value of 5c, still
applies, so that from reference 1,

Scr = 0.207r (28)

Note that 6_r, in the first approximation, depends only
cn the tube's original cross-sectional radius and is
independent of the tube thickness h.

V_lld_tlon of Extended _;Iosed-form Solution

An efficient computational approach was
desired to validate the extended closed-form solution

for tubes having properties in the range of interest for
this study. Nonlinear collapse analyses of isotropic
tubes conducted in the past using computational
methods include a study by Stephens, Starnes and
Almroth 6, who analyzed the nonlinear collapse
behavior of long cylindrical shells subjected to
combined bending and pressure as well as pure
bending using a finite difference approach. Their
results showed close agreement with the predictions
of Brazier 1 for isotropic tubes with a radius-to-
thickness (r/t) ratio of 100 and loaded by pure
bending. Knight, Macy, and McCleary7, using a finite
element approach to analyze the collapse of long
circular isotropic cylinders in bending, reported
similar results. However, these analyses included
neither orthotropic materials nor tubes with r/t < !00.

The present study was motivated by the
proposed use of graphite-epoxy tubes having r/t
ratios much less than 100 as structural elements in
large space structures. A typical section, or bay, of
such a structure is sketched in figure 4. The structure

_==__ 2.5 in

200 in

Typical Truss Bay Tube Cross Section

.013 in Aluminum

+ Adhesive

SECTION A-A

Graphite/Epoxy

Figure 4 Proposed space structure tube properties

is composed of a series of individual truss members
connected in a repeating geometric pattern. Each
truss member is a 2.5-inch diameter tube with a wall
thickness of 0.0784 inches plus a 0.013 inch thick
non-structural protective aluminium coating bonded
to the graphite-epoxy. Table 1 lists the properties of
the graphite-epoxy material which was used as a 1
baseline for this study.

Tube Configuration:

Number of plies: 16
Ply thickness: 0.0052 in.
Layu p: [28/04/-28/02]s

Coating:0.005 in. aluminum foil bonded b
0.008 in. adhesive layer

Material Design Properties for IM7/977-2:

(Fiber Volume and density: V! = 57.6%,

p = 0.056 Ib/in 3)

E1 = 20E6 psi
E2 = 1.06E6 psi
G12 = 0.75E6 psi

v12 -- 0.3

Lamina Strength Properties:

(Note: X = fiber, Y = matrix, T = tension,
C = compression)

XT = 320E3 psi
Xc = 160E3 psi
YT = 8.5E3 psi
YC = 30E3 psi

Table

S
IS

=11 E3 psi (in-plane shear strength)
=14E3 psi (interlaminar shear strencjth).

1 Tube layup and lamina strength properties
for baseline composite design

The following section describes the finite
element model and analysis procedure used in the
study. The accuracy of the analytical model was
established by performing a finite element analysis of
an isotropic tube and comparing the results to
Reissner's 1 solution. Orthotropic material properties
were substituted into the model and the same
analysis procedure was used to validate the
extended Reissner solution for the laminate design
which was chosen as a baseline for this study. Fimte
element analyses were then performed for a range of
laminate designs to extend the validation of the
closed form solution.

Finite Element Model

A finite element model was constructed of a
section of tube with the geometry shown in figure 5.
A quarter section of a tube of length L was modeled
using symmetric boundary conditions in the xz and yz
planes. A moment M was applied at one end of t.he
tube using a "rigid element". The rigid element
consisted of constraint equations which forced the



circularcross-sectionto remain circular and rotate as

a rigid body about the .y axis.

An initial finite element model was built for a

tube with a length to radius ratio (L/r) of 10. The
model, shown in figure 5, consisted of 16 equally
spaced rings of quadrilateral elements. Each ring
contained 36 elements evenly spaced at 5 degrees
apart. The four rings closest to the loaded edge were
made slightly thicker than the nominal tube wall
thickness. The thickness of the ring at the loaded
edge was increased enough to provide a 10 percent
increase in moment of inertia of the nominal tube
cross-section and each of the other three rings was

desicjned to provide 2.5 percent less inertia than the
previous ring. The tapered wall thickness was
introduced to prevent failure due to local instabilities
at the loaded edge.

,xz symmetry

• /x

tapered thickness

Figure 5 Finite element model for Ur = 10

The model was analyzed using
MSC/NASTRAN to solve the geometric nonlinear
problem using an iterative process based on
variations of Newton's method. 8 An analysis was
selected which allowed the program to automatically
choose the most efficient solution strategy and
update the tangent stiffness matrix when necessary
based on estimated convergence criteria. The
moment was applied incrementally to the tube and
the total amount of cross-sectional flattening was
computed at each converged load step. Figure 6

illustrates that the cross-sectional flattening, 5,,, is
defined as the average of the absolute values of the
elastic deformations of the top and bottom of the tube.
It is measured at the unloaded end of the model and
is calculated by taking half the absolute value of the

difference of the transverse deflections at _ = _,'2 and

= -n/2. The collapse moment was defined as the
moment at which a load increment of less than 0.1
percent caused the solution to fail to converge.

- _I, elastic

¢=_,deformed .,.._ _ _..,,,,

J ',.,,t

Cross- ctionalflatteni : = S,-

Note: maximum cross-sectional flattening occurs at 1_/2,
i.e., at the xy symmetry plane of the model

Figure 6 Definition of cross-sectional flattening

Accuracy of the Finite Element Model

The initial analyses conducted in the present
study used tubes with isotropic materials in order to
verify the modeling and solution procedures and to
provide a lower bound for the collapse moment of the
baseline composite tube. Therefore, material
properties were chosen for an isotropic material
having a Young's modulus equal to Ez= (the weaker,
circumferential modulus) of the composite material.
A length-to-radius ratio of 10 was chosen for the first
model to minimize the number of finite elements
needed in the analysis. An initial analysis was
performed without the rigid element at the loaded
end to allow the cross-section to deform and more
closely approximate a pure bending loading through
a larger region of the model. Moment loading was
accomplished by applying an axial edge force
distributed as a cosine function around the
circumference of the tube. However failure caused
by local instabilities occurred at the loaded edge
when the applied moment reached a value of about
60 percent of the predicted collapse moment.

In order to prevent the premature edge failure,
the rigid element, described previously, was added to
the model to ensure that the loaded edge would not
buckle. The revised model was loaded until collapse
of the cross-section occurred at the end of the tube
where the symmetric boundary conditions are
applied. A plot of applied moment versus cross-
sectional flattening at the end of the tube, shown in
figure 7, indicates that the final collapse moment,
9515 in-lbs, was 5.7 percent greater than the
predicted value obtained by using Reissner's

solution, The cross-sectional flattening, &,,, was
0.136 inches, which was 45 percent less than the
value predicted by the Reissner solution.
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Figure 7 M vs 5w for various ratios of L/r, isotropic
material, E = E22 = 1.29E6 psi

Two additional models were analyzed to
investigate the effect of tube length on the predicted
collapse moment. One model was built to represent
a tube with an L/r ratio of 15 and one with an Ur of
20. The results are plotted in figure 7 along with the
results of the first analysis. The predicted collapse
moment for the longest tube fur = 20) was 9220 in-lb,
which was 2.4 percent greater than the predicted
moment, and the cross-sectional flattening was 5.6
percent less than the predicted value, The symbols
on the curves in figure 7, which indicate intermediate
solution results, snow that the convergence criteria
also affected the cross-sectional flattening more than
the collapse moment. References 6 and 7 show
similar trends for isotropic cylinders with R/t ratios of
100 and varying/_Jr ratios.

The length effect was further investigated by
plotting the cross-sectional flattening as a function of
the distance from the loaded edge of the tube, as
shown in figure 8. In the finite element models, the

0.8

E 0.6

-.... 0.4

0.2

,,., / x=O x=1../2

--/,/ -- - - M/Mcr = 0.1

_/_/" - - - M/Mcr 1 0
• _ |

0 0.1 0.2 0.3 0.4 0.5

x/L

Figure 8 Normalized 5w vs x/L for isotropic
material, L/r = 20

rigid element used to load the beam introduced
boundary conditions which affected the deformation,

causing the maximum &, to occur at a distance of U2
from the loaded end (L/2 is the actual length of the
model, since it is a symmetric representation of a
tube of length L). However, according to Reissner's

theory, &, should be constant along the length of the
beam, since the beam is infinitely long and is in a
state of pure bending. The plot in figure 8 shows that
although the cross-sectional deflection varied from

zero at the loaded end to &..... at x=L/2, the
deformation in the region 0.4L to 0.5L was relatively
constant and was within 95 percent of the maximum.
Based on the results shown in figures 7 and 8, it was
concluded that an L/r of 20 was sufficient to
approximate pure bending at U2, and a decision was
made to use this L/r ratio for the rest of the models in

the present study.

Nonlinear Bending of Elastic Axis

The nonlinear character of the bending is
further illustrated in figure 9, where a plot is shown of
the applied moment versus the deflection of the
elastic axis of the tube for the L/r = 20 case. A
comparison to the straight-line deflection curve
predicted by linear beam-bending theory shows that
the cross-sectional deformation causes a significant
reduction in stiffness at load levels well below the

collapse moment. The actual deflection of the elastic
axis at collapse is about 30 percent greater than the
deflection which is predicted by linear beam theory
for the same applied moment.

12000

10000

8ooo

1_ 6000

E
o 4000

2000
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0.4 0.8 1.2 1.6

Centerline deflection, inches

Figure 9 Deflection of elastic axis, isotropic material

The finite element solution agreed with the
Reissner solution for the critical collapse moment of
isotropic tubes with an L/r ratio of about 20 by
predicting a critical moment which was less than 3
percent different. The cross-sectional deformation
was relatively constant in the central portion of the
tube, indicating that the finite element model
provided a good approximation to pure bending of an
infinitely long tube at the collapse location. Even
though both the critical moment and the maximum
cross-sectional flattening were functions of the model
length, the cross-sectional flattening was much more
sensitive to both the model length and the definition
of the convergence criteria for the collapse moment.



inspectionof the deformed cross-section prior to
collapse revealed that the deformation was not
doubly symmetric, as assumed in the closed form
solution.

Analysis of ComDosite Tubes

The verified isotropic finite element model was
modified slightly for the analysis of composite tubes.
The lamina properties and layup of the composites
were used as input to the finite element program,
which calculated equivalent orthotropic properties to
use in the nonlinear finite element analyses. The
calculated properties included the D/6 and D26 terms,
which were ignored in the closed-form solution. The
same analysis procedure used in analyzing the
isotropic tubes was followed.

Baseline ComDosite

Z deformed structure

'C

undeformed boundary
¥

Note: Displacements are not magnified

The material properties and layup listed in
table 1 were provided as input for analyzing the
composite tube used as a baseline for this study.
The results, shown in figure 10, agreed very closely
with the closed-form solution calculated by applying
equation (27). The critical moment predicted by the
finite element analysis was 32,800 in-lbs, which was
5.5 percent below the closed-form value, and the
cross-sectional flattening of 0.126 inches was 49
percent less than the closed-form prediction, as
shown in figure 10.

t40

.8 t2o
"7"

g 100
C

g 60

0

20

0
0

. &....A.*'*

.."'" --- Baseline composite
,A"

,..:'" -_ Isotropic, E = E22

•"" -*-Isotropic, E = Etl

-- it-.- _ _ ,-.-.U-- o _ •
ar.q,_.c;_ |-41 ,4o _ &M-. -- & I ,

0,05 0.1 0.15 0.2 0.J)5

Sw, inches
Notes:

I. Filled symbols represent predicted (closed-form)
results

2. Dashed line for upper curve represents results
obtained by assuming linear elastic material

Figure 10 Comparison of composite and isotropic
results

Figure 11 Deformed structure prior to collapse,
baseline composite

Figure 12 shows this effect more clearly in a
composite plot of the tube cross-section for various
load levels. It is evident that the bottom of the tube,
which was in longitudinal compression, deformed
(flattened) more than the top of the tube, which was in
longitudinal tension, i.e., the tube cross-section did
not deform into the doubly symmetric shape assumed
in the closed-form development. This reduced
deformation at the top of the tube was evidently
caused by the stiffening effects of the tension field.

Curve No.

6--

M/Mcr 1m

0.15

0.46

0.76

0.91
6--

,o

Note: displacements are not magnified

Figure 12 Cross-sectional flattening at symmetry
boundary, baseline composite

The stress distribution of the finite element
solutmnFigure 11 shows a plot of the deformed tube

at the point of collapse, Inspection of the
deformationsshows a visibledifferencebetween the

top and bottom deflections,&1 and &2, as inthe

isotropic case.

was inw__ to evaluate the
assumptions usecl in the development 0f-ti_e closed'
form solution. The longitudinal stress fTe|d s-h(_
evidence of pure beno_n 9 at _/he ce_nt=er of the tul_
when it is near fagure as was assumed in the closed-
form _,o_ -i_aJo']i_n tee_c'_rn_-i"er-ent_al-:stl:ess at

the mi_e surface of the tul:).e_with the exception of a
local stress concentration in the compression field,
was very small, validating the assumption of zero
circumferential strain in the closed-form solution.

8



Isotrooic Solution as UDDer Bound

A second isotropic case was analyzed using
the longitudinal modulus, E., of the composite. The
value of E. (17.5E6 psi) was approximately the same
as Young's modulus for titanium. This case provided
an upper bound for the collapse moment of the
composite tube. The three solutions are plotted in
figure 10. Note that the isotropic tube with E =EII is
so much stiffer than the other two tubes, that it would
have experienced material failure at a load level of
about 30 percent of the predicted collapse moment.
The results plotted in figure 10 show that using
Reissner's formula for isotropic tubes with the weaker
elastic modulus, E22, would result in a substantially
conservative prediction of the collapse moment of the
composite tube.

Other possible Failure ly_;hanisms

Alternative failure mechanisms were
investigated to determine whether the composite
tube might fail at a load level below the calculated
critical moment. The closed-form predicted applied
stress state was used to calculate stresses in the

outer plies of the laminate, and the results showed
that laminate failure would probably not occur before
the tube collapsed due to the nonlinear bending
effect.

The other failure mechanism which was a

concern for thin tubes was short wave-length
buckling on the compression side of the tube. The
formulas of reference 9 were used to calculate the

critical bending moment which would cause buckling
of an orthotropic cylinder. The results indicate that
the minimum bending moment which would cause
short-wave buckling of the tube is 42,100 in-lb. This
value is greater than the predicted collapse moment
of 34,700 in-lb, indicating that the Brazier effect
would probably be the dominant failure mechanism
for the baseline tube.

Practical Range of A001ication for Tubes

Several tubes having the same lamina
properties, but different layups and thicknesses, were
analyzed to provide further verification of the
accuracy of the closed-form solution for a wider
range of parameters. The equation for the critical
moment, equation (27), is rewritten below in terms of

a parameter Z:

Mcr =/crY.

where r, the tube radius, is a geometrical parameter,

and _.=[AIID2z] I/2 is a material parameter which

incorporates the thickness h. The parameter ;t
represents an "equivalent stiffness" which accounts
for the longitudinal extensional stiffness and the
circumferential bending stiffness of the shell. The
calculated critical bending moments for three

different radii r are plotted as a function of _. in figure
13. The closed-form and finite element results shown
in the figure agree closely, with the maximum
difference no greater than 7 percent. The r/t ratios

varied from 12 to 26. In general, the tubes with a
higher r/z ratio showed closer agreement between the
closed-form and finite element results. As in the
baseline case, the predicted local instability due to
short-wave buckling would occur at a moment
greater than the collapse moment for the finite
element models used in this study.
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Figure 13 Predicted values of Mcr vs _, for various
composite tubes

The closed-form predicted values of stress at
Mc, were calculated for each case to determine if
material failure would occur for a moment less than

Mc,. The dashed-line portions of the curves in figure
13 show the values of _ forwhich material failure

would govern, based on strength values given in
table 1. The curves should provide accurate values
of Me, for any composite which behaves as specially

orthotropic and has values of Z in the range shown
on the plot, however, the point at which the dashed
lines begin would vary depending on the strength
properties of the laminate. The values of Z chosen
for analysis were based on plausible symmetric
layups.

Conclusions

Reissner's theory for the nonlinear collapse of
isotropic circular cylinders has been extended to
include composite tubes having specially orthotropic
material properties subject to end moments, and a
single closed-form formula has been presented as a
design aid. Nonlinear finite element analyses were
conducted to investigate the accuracy of the
extended solution. Agreement between the closed-
form solution and the finite element analysis was
good for the structural parameter range investigated.
The finite element analysis verified the following
major assumptions of the closed-form solution: (1)
the cross-sectional deformation was inextensible ,
and (2) the longitudinal stress distribution was



constantalongthe length of the tube. The finite
element analysis also validated the extension of the
closed-form solution proposed in this paper for
specially orthotropic materials, and verified that
neglect of the D/6 and D26 terms in the bending
stiffness matrix did not significantly affect the
accuracy of the closedfform solution. The solution
was used to investigate possible failure due to pure
bending of graphite-epoxy truss members of a size
consistent with tubes designed for large on-orbit
space structures. Several additional nonlinear finite
element analyses validated the closed-form solution
for an extended range of tube thicknesses and
diameters.
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